skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gallagher, Rachael V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Wildfire is a critical ecological disturbance in terrestrial ecosystems. Australia, in particular, has experienced increasingly large and severe wildfires over the past 2 decades, while globally fire risk is expected to increase significantly due to projected increases in extreme weather and drought conditions. Therefore, understanding and predicting fire severity is critical for evaluating current and future impacts of wildfires on ecosystems. Here, we first introduce a vegetation-type-specific fire severity classification applied to satellite imagery, which is further used to predict fire severity during the fire season (November to March) using antecedent drought conditions, fire weather (i.e. wind speed, air temperature, and atmospheric humidity), and topography. Compared to fire severity maps from the fire extent and severity mapping (FESM) dataset, we find that fire severity prediction results using the vegetation-type-specific thresholds show good performance in extreme- and high-severity classification, with accuracies of 0.64 and 0.76, respectively. Based on a “leave-one-out” cross-validation experiment, we demonstrate high accuracy for both the fire severity classification and the regression using a suite of performance metrics: the determination coefficient (R2), mean absolute error (MAE), and root-mean-square error (RMSE), which are 0.89, 0.05, and 0.07, respectively. Our results also show that the fire severity prediction results using the vegetation-type-specific thresholds could better capture the spatial patterns of fire severity and have the potential to be applicable for seasonal fire severity forecasts due to the availability of seasonal forecasts of the predictor variables. 
    more » « less
  2. Abstract Traits with intuitive names, a clear scope and explicit description are essential for all trait databases. The lack of unified, comprehensive, and machine-readable plant trait definitions limits the utility of trait databases, including reanalysis of data from a single database, or analyses that integrate data across multiple databases. Both can only occur if researchers are confident the trait concepts are consistent within and across sources. Here we describe the AusTraits Plant Dictionary (APD), a new data source of terms that extends the trait definitions included in a recent trait database, AusTraits. The development process of the APD included three steps: review and formalisation of the scope of each trait and the accompanying trait description; addition of trait metadata; and publication in both human and machine-readable forms. Trait definitions include keywords, references, and links to related trait concepts in other databases, enabling integration of AusTraits with other sources. The APD will both improve the usability of AusTraits and foster the integration of trait data across global and regional plant trait databases. 
    more » « less
  3. Abstract AimAddressing global environmental challenges requires access to biodiversity data across wide spatial, temporal and taxonomic scales. Availability of such data has increased exponentially recently with the proliferation of biodiversity databases. However, heterogeneous coverage, protocols, and standards have hampered integration among these databases. To stimulate the next stage of data integration, here we present a synthesis of major databases, and investigate (a) how the coverage of databases varies across taxonomy, space, and record type; (b) what degree of integration is present among databases; (c) how integration of databases can increase biodiversity knowledge; and (d) the barriers to database integration. LocationGlobal. Time periodContemporary. Major taxa studiedPlants and vertebrates. MethodsWe reviewed 12 established biodiversity databases that mainly focus on geographic distributions and functional traits at global scale. We synthesized information from these databases to assess the status of their integration and major knowledge gaps and barriers to full integration. We estimated how improved integration can increase the data coverage for terrestrial plants and vertebrates. ResultsEvery database reviewed had a unique focus of data coverage. Exchanges of biodiversity information were common among databases, although not always clearly documented. Functional trait databases were more isolated than those pertaining to species distributions. Variation and potential incompatibility of taxonomic systems used by different databases posed a major barrier to data integration. We found that integration of distribution databases could lead to increased taxonomic coverage that corresponds to 23 years’ advancement in data accumulation, and improvement in taxonomic coverage could be as high as 22.4% for trait databases. Main conclusionsRapid increases in biodiversity knowledge can be achieved through the integration of databases, providing the data necessary to address critical environmental challenges. Full integration across databases will require tackling the major impediments to data integration: taxonomic incompatibility, lags in data exchange, barriers to effective data synchronization, and isolation of individual initiatives. 
    more » « less